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Abstract

This paper discusses the implications of Gödel’s Incompleteness

Theorems on epistemology, especially on the question of computability

of mathematical reasoning. Arguments are presented by John Lucas,

David Chalmers, William Reinhardt and Timothy Carlson.

1 Gödels Dichotomy

Can we determine if a certain mathematical system - a bunch of axioms

and inference rules - comprises all of mathematics? Mathematics is

the study of structure, order and relation1 and therefore primarily

∗This essay has been written as a final paper for the seminar “Topics in the philosophy

of mathematics”, taught by Peter Koellner at Harvard University in fall term 2009.
1Art. “mathematics.” Encyclopædia Britannica. Encyclopaedia Britannica 2008 Ulti-

mate Reference Suite. Chicago: Encyclopædia Britannica, 2008.
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an action performed by an intelligent lifeform. It includes all logical

problems such a person can possibly formulate, since all mathematical

propositions can be rewritten as logical propositions. But it is disputed

if a mathematical problem has to be not only formulatable but also

provable in order to be considered a part of mathematics.

Objective Mathematics is defined as “the body of those mathe-

matical propositions which hold in an absolute sense, without any

further hypothesis”, whereas Subjective Mathematics is “the body of

all humanly demonstrable (or knowable) mathematical truths, i.e.,

all the propositions which the human mind is capable of demonstrat-

ing.”2 Kurt Gödel argued in 1951 that it is contradictory to perceive

a certain axiomatic system to be objective mathematics, because the

consistency of this system would always remain as an expressable but

provably unprovable sentence. If we knew that a certain system com-

prises all of mathematics, we would also know its consistency - which

entails that our reasoning can impossibly be comprised by this partic-

ular system.3

Theorem 1 (Gödel). No well-defined system of correct axioms can

contain all of mathematics.

The fundamental question about the epistemological status of math-

ematics can be formulated as “Do subjective and objective mathemat-

ics coincide?” If we negate this question, we postulate mathematical

propositions which are absolutely undecidable, and if we believe in the

meaningfulness of every expressable problem, this decision leads us

to the view that mathematics cannot be a human creation. If we,

2Feferman 2006, 2.
3C.f. Gödel 1951, 309.
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however, believe that they coincide, we face an even more challenging

consequence, namely that human beings are able to determine all or

at least some undecidable problems and therefore, as Gödel expresses

it, that “the human mind (...) infinitely surpasses the powers of any

finite machine”. The restriction to these two answers has come to be

known as Gödels dichotomy.4

2 Independence and undecidability

According to our notion of whether a theorem can be acknowledged as

intuitively acceptable, the studies of reverse mathematics determine

the least amount of axioms that are needed in order to write down

a straightforward mathemtical proof for this theorem. This is what

leads us to accept set theory as the only plausible (sub-)model of rea-

soning, because every weaker system either lacks certain proofs5 or

will never be able to determine some meaningful (but not yet proved)

statements.6 Peter Koellner argues that “taking the power set oper-

ation seriously” automatically “throws you up” into a higher system,

all the way to ZFC.

Gödel discovered in 1936 that every consistent system that includes

the notion of natural numbers and induction (Peano Arithmetic) con-

tains undecidable sentences and is therefore incomplete. This form of

4Feferman 2006, 1-3.
5E.g.: The Hydra Theorem is beyond Predicate Recursive Arithmetic (Finitism),

Kruskal’s theorem is beyond ATR0 (Predicativism), the Graph Minor Theorem is beyond

Π1

0
-CA.
6E.g. the claim that all projective sets are Lebesgue measurable is even beyond Zermelo-

Fraenckel set theory with the axiom of choice.
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undecidability is a relative undecidability, since it is possible to prove

such a sentence in a stronger system. For example, the consistency of

Peano Arithmetic can be proved in the system PRA + PR-TI(ǫ0)
7.

If we have two systems with a different provability power we can

compare them by determining the place of the universe of the systems

in the interprability hierarchy of sets. For every system there is a

subclass of the universe of sets that has a model which is mutually

interpretable with the system and therefore has the same provability

power. A set Vβ , where β is any ordinal, is the set union of all sets

beneath in the hierarchy:

Vβ =
⋃

α<β

Vα

Now Vω (where ω is the ordinal reflecting the amount of natural num-

bers) is a model of PA (where PA is mutually interpretable with ZFC

without the axioms of infinity and replacment). Two steps up - af-

ter adding two axioms - we arrive at Zermelo-Fraenckel set theory,

of which Vκ is a model, κ being a strongly inaccessible cardinal8. In

order to further climb up the hierarchy, one can add more and more

large cardinal axioms.

It is, however, not always the case that adding a new axiom makes

the newly created system a stronger one. As Gödel has shown, the

consistency sentence as well as its negation are independent from any

sufficiently powerful system.9 But while one “jumps up the hierar-

chy” by adding the consistency sentence, one does not by adding its

7Predicate Recursive Arithmetics + transfinite induction up to ǫ0 for primitive recursive

predicates. Vgl. Gentzen 1936.
8κ =sup{ω, 2ω, 22

ω

, ...}
9This is Gödels second Incompleteness Theorem. ‘Sufficiently powerful’ means that
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negation: If a system is inconsistent, it proves anything, even its own

consistency; adding the inconsistency sentence as a new axiom does

not make any difference. We say that a consistency axiom creates

a single jump. If a sentence as a new axiom as well as its negation

as a new axiom both established a more powerful system, this would

be called a double jump, although there are no natural examples for

this case.10 It is more interesting to look at these sentences that are

independent but do not bring about any jump at all.

2.1 The Continuum Hypothesis

One example for this case is the Continuum Hypothesis (CH), in-

troduced by Cantor and as old as set theory itself. This hypothesis

basically says that ℵ1 = i1, where ℵ1 being the cardinality of the

set of all countable ordinal numbers and i1 = 2ℵ0 . The Generalized

Continuum Hypothesis (GCH) similarly states that for all ordinals α,

ℵα = iα.

Gödel and Cohen showed that CH and its negation are both in-

dependent from ZFC. But adding CH or its negation as a new axiom

does not create a more powerful system; the systems are mutually

interpretable: 11

Theorem 2. ZFC ≡ ZFC + CH ≡ ZFC+¬CH

the system has to be able to express any formula in its language as a natural number;

therefore every system that is an extension of Peano Arithmetic is considered sufficiently

powerful.
10C.f. Koellner 2010, 38f (Ch. 2.3.2).
11C.f. Koellner, Peter: Strong Logics of First and Second Order, to appear in Bulletin

of Symbolic Logic, 16.
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Due to this type of independence, CH cannot be settled by any

large cardinal axioms discovered so far. Yet there are certain pro-

posed axioms “beyond” large cardinals that settle CH. For example,

ZF + V=L (the assertion that every set is constructible) proves GCH;

however, certain large cardinals refute this assertion, like the exis-

tence of measurable cardinals (Scott 1960). Furthermore, Woodin’s

Strong Ω-Conjecture implies the existence of a ‘good’ axiom that im-

plies ¬CH.

Although CH has for a long time been regarded as a good candidate

to be an absolutely undecidable problem, we know today that there

might be axioms that settle CH or ¬CH respectively. The problem

here is to give criteria for a reasonable justification of new axioms.

2.2 Principle of reasoning

What justification do we have to accept axioms? Let us start with

the intuitive concept of natural numbers covered by Robinson Arith-

metic Q. To accept the self-evident theory Q but not accepting any

extensions of it can be shown to be incoherent by the principle of

reasoning:

Theorem 3 (Principle of Reasoning). If one accepts a certain theory

to be a model of reasoning, one also has to accept the consistency of

this thoery.

Together with a serious notion of powersets (that is to assert that

the powerset operation is meaningful and not inherently vague) this

principle leads us all the way up to accepting set theory. What about

going further? Gödel introduced the criterion of fruitful consequences
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for the (extrinsic) justification of new axioms.12 Since large cardinal

axioms can settle quite a few statements which would remain abso-

lutely undecidable when regarding ZFC as the “final theory”, we are

justified to accept LCAs as new axioms. A similar point can be made

for the axiom V = LΩ
S .

13

2.3 The Penrose-Lucas-Argument

If I can know anything at all, human reasoning must be consistent.

From this premise John Lucas developed in 1961 an argument against

functionalism. This argument was further developed by Roger Penrose

and David Chalmers.

Claim 4. (If I can know anything at all,) I know that if there is

an ultimate model for human reasoning, then this model has to be

consistent.

For any Turing machine that can simulate human reasoning by a

certain kind of knowledge or unassailable belief (Chalmers) or intu-

itive provability (Reinhardt) function, this function cannot determine

the consistency of itself. Invoking Gödel, the question “Is there any

sentence which I can prove to be not an unassailable belief” cannnot

be answered by this Turing machine. Thus, for any Turing machine T

I can know that if T captures my reasoning powers, I would be able to

know T ’s consistency and can therefore assert that T does not capture

all of my reasoning powers.14

12C.f. Gödel 1947, 261.
13C.f. Koellner / Woodin 2010, Ch. 8.2.2.
14C.f. Lucas 1961 and Chalmers 1995.
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3 The epistemology of provability

In his article “Reflexive Reflections” and in “Representation & Real-

ity”, Hilary Putnam advances the view that “all epistemic methods

employed in human inquiry are, formalized, susceptible to Gödel’s

theorems.”15 Therefore, Gödel sentences cannot only be constructed

in certain axiomatic systems but also in a system capturing human

reasoning and epistemology - as far as such a system exists.

3.1 Epistemic Arithmetic

Epistemic Arithmetic (EA) is a modal theory of arithmetic developed

by William Reinhardt and S. Shapiro.16 EA is an extension of PA

including a quantified version of the modal logic S4. Using Gödels In-

completeness Theorem, Reinhardt proved that the following sentence

is inconsistent with EA: “I am a Turing machine and I know which

one.”17 But he also formulated a weaker schema, called the Strong

Mechanistic Thesis (SMT) which he conjectured to be consistent with

EA:18

Claim 5 (SMT). For any formula φ(x), I know that the set of x for

which I know φ(x) is recursively enumerable.

If human reasoning can be modeled by an axiomatic system, then

it can also be simulated by a Turing machine:

15Buechner 2006, 30.
16C.f. Carlson 1999, 2.
17Reinhardt 1986, 427-474.
18C.f. Carlson 1999, 4.
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Corollary 6 (Post-Turing thesis). ‘Humanly provable’ is equivalent

to provability by some Turing machine.

Timothy Carlson gives the definition that an entity is a know-

ing machine if it is recursivley enumerable.19 In his paper “Knowl-

edge, Machines, and the Consistency of Reinhardt’s Strong Mechanis-

tic Thesis” he proves that EA as well as EA+SMT are such knowing

machines.20 But this proof cannot be regarded as a proof of function-

alism, because it already presupposes functionalism by asserting that

human knowledge is fully captured by the system EA.

3.2 The belief predicate

William Reinhardt introduced a belief predicate to use Gödels argu-

ment in epistemology, presuming that the Post-Turing thesis is cor-

rect. He classifies this predicate as a “one-place sentential connective

(modal operator)”21 It is not a standard predicate because its pa-

rameter can only be a boolean sentence. The operator shall give an

“exact account of the formal axioms for ‘provable’ in the ‘intuitive’ or

‘absolute’ sense.”

Assuming that human reasoning powers can be captured by a for-

mal system, then this system would include such a belief operator.

According to Reinhardt, the following axioms hold for this system:

Axiom 7 (1). Bp → p

Axiom 8 (2). B(p→ q) → (Bp → Bq)

19Ibid., 11.
20Ibid., 23-28.
21Reinhardt, 318.
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Axiom 9 (3). Bp → BBp

Axiom 10 (4). B(∀nP (n)) → ∀nBP (n)

The first axiom is the principle of epistemological infallibilism and

basically follows from the correctness of our system and mathematical

realism.

Let us consider a system T that at least includes Robinson Arith-

metic Q and is a model of human reasoning including a belief operator

B as defined above. Now it is possible to construct a fixed point to

obtain an undecidable B-sentence. The proof herefore is quite sim-

ilar to Gödel’s method. Let us take a look at the construction of

self-referential sentence with the method of diagonalization:

Lemma 11 (Gödel/Smullyan). For every formula F with one free

variable having the Gödel number gF , there exists a sentence E such

that E(n) ⇔ ∀v1 : (v1 = n) → F (v1). The function e(gF , n) can be

defined to produce the Gödel number of any E(n). The diagonaliza-

tion function will be defined as d(x) ⇔ e(x, x) and outputs the Gödel

number of a predicate that is equivalent to a function, which is given

over its own Gödel number as an argument.

Let P̃ stand for the set of all non-provable sentences, and P̃ ∗ for

its diagonalization. The provability predicate is shown by Gödel to

be arithmetic in systems including PA. Let H(v1) be the function

expressing P̃ ∗, having the Gödel number h. The diagonalization of H

corresponds to Eh(h) and has the Gödel number d(h). Hence, Eh(h)

is only true if and only if it is not provable, since if it is true, its Gödel
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number d(h) is an element of P̃ .22 Therefore Eh(h) is an undecidable

sentence.

Reinhardt constructs a theorem that is similar to Gödel’s, only

working with an extended system that includes a belief operator.

3.3 Reinhardt’s Theorem

Theorem 12 (Reinhardt). “If the Post-Turing thesis obtains, then

there must be absolutely undecidable sentences of arithmetic.”

If the Post-Turing thesis obtains, then every humanly decidable

sentence is recursively enumerable. One can create a “belief system”

T that is an extension of Robinson or Peano Arithmetic, containing a

belief operator and the associated axioms shown above.

Definition 13 (Reinhardt). Let F be a formula with one free variable

in T, such that for each p either “F [p] → p” or “F [p] → Bp” is a

belief sentence in T. F is therefore by definition a predicate that is

a sufficient condition for truth or knowledge (belief) of a sentence,

similar to the provability predicate.

Lemma 14 (Reinhardt). A belief system T with a Gödel sentence s

proves both Bs and B¬F [s].

Proof. Consider the tautology (X → Y ) → ((¬X ↔ Y ) → Y ). Every

tautology is a belief sentence. Substitute F[s] for X and s for Y:

B(F [s] → s) → ((¬F [s] ↔ s) → s)

22C.f. Smullyan 2002, 36f and 49f.
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According to the second belief axiom, the belief operator B can be

distributed into material implications, which yields

B(F [s] → s) → (B(¬F [s] ↔ s) → Bs)

B(F [s] → s) holds by definition of F , and B(s ↔ ¬F [s]) holds because

s is a Gödel sentence. Hence

T ⊢ Bs

We can also apply the B-distibution to the definition of the fixed point

construction, yielding Bs → B¬F [s]). From Bs follows

T ⊢ B¬F [s].

Theorem 15 (Reinhardt). If T is ω-complete, there is a sentence s

such that T ⊢ s ∧ ¬Bs, saying that s is absolutely undecidable.

Proof. Let U(e,x) be any formula with two free variables e,x. Suppose

in addition that for each Predicate P, T ⊢ ∃e : ∀x : BP (x) ↔ U(e, x).

This basically says that every humanly decidable sentence is recur-

sively enumerable. Then there is a formula q(e) with one free variable

e such that T∃e : q(e) ∧ ¬Bq(e). If T is ω-complete, then Ts ∧ ¬Bs.23

3.4 David Chalmers

David Chalmers wrote a paper called “Minds, machines, and Gödel”

commenting on John Lucas’ and Roger Penroses’ argument against

23C.f. Reinhardt 1985, 326.
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functionalism. According to him, a system S, which “unassailably

believes in its own consistency”24, leads to a contradiction. At first,

one assumes that B(X) represents “a system’s reasoning about its own

belief”. The symbol A(X) should stand for the ability of a system to

assert unassailably that X. Chalmer’s argument can then be stated as

following:

(1) If X is an unassailable sentence in S, then the belief in X is also

unassailable. (2) Modus ponens is valid for belief sentencenes and this

validity is an unassailable belief. (3) The system knows unassailably

that if it beliefs a certain sentence, then it also has to belief that

it beliefs this sentence. (4) The system knows unassailably that it

is consistent, that is, that it knows that it does not belief in any

contradictory sentence f . (5) A Gödel sentence can be construed

saying “I don’t belief in G”. (6-12) From these premises a proof can

be shown leading the system to assert an unassailable belief in its own

inconsistency.

A(′X ′) ⇒ A(′B(X)′) (1)

A(′B(X) ∧ B(X → Y ) → B(Y )′) (2)

A(′B(X) → B(B(X))′) (3)

A(′¬B(f)′) (4)

A(′G ↔ ¬B(G)′) (5)

24Chalmers 1995

13



A(′B(G) → B(¬B(G))′) [from (5)] (6)

A(′B(G) → B(B(G))′) [from (3)] (7)

A(′B(G) → (B(¬B(G) ∧ B(G)))′) (8)

A(′B(G) → B(f)′) (9)

A(′f → G′) [ex falso quodlibet] (10)

A(′B(f) → B(G)′) [from (10),(2)] (11)

A(′G ↔ ¬B(f)′) [from (9),(11)] (12)

A(′B(G)′) [from (12),(4),(1)] (13)

A(′B(f)′) [from (13),(9)] (14)

Since neither the premises (1-3) can be doubted nor the inclusion of

Peano Arithmetic into our belief system which makes the construction

of a Gödel sentence possible (5), the only premise that not only can

but because of the contradiction this proof leads to must be rufuted

is premise number 4. Chalmers conclusion therefore is: “Perhaps we

are sound, but we cannot know unassalably that we are sound.”25

Penrose’s reply to Chalmers was basically the retention of premise

(4), at the same time refuting the very idea of an axiomatic belief

system. This concept would already presuppose functionalism and is

inconsistent, as Chalmers argument has shown.26

3.5 A hierarchy of knowledge

The development from rationalism to criticism or even empiricism was

a process of disputing the assumption that humans can obtain abso-

25Ibid.
26C.f. Penrose 1996, 3.6.
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lute knowledge. Already David Hume argued that most knowledge

is based on induction, and induction is a good, but not an absolute

justification. Furthermore, Kuhn, Feyerabend and Quine criticized

the method of falsification for scientific theories or paradigms. The

Duhem-Quine thesis states that every hypothesis requires axiliary as-

sumption an can therefore not be tested or falsified in isolation. Today,

in science as well as in metaphysics, we build certain models of reality

and compare these models according to criteria like consistency, co-

herency with sensual experience (including predictability power) and

ontological parsimony. To hold not only a scientific pluralism (plu-

ralism of theories) but also a pluralistic methodology makes objective

comparison of theories impossible. Even Feyerabend was careful when

he thought about the absolute incommensurability of theories,27 see-

ing that this might lead to scientific ‘anarchism’.

One important result of debating the pluralistic approaches of

knowledge for philosophy of mathematics and epistemology is the fol-

lowing: If one can know anything at all, one knows its own consistency.

To be more precise, if knowledge is comparable according to its grade

of certainty, then the grade of the knowledge of one’s consistency is

above all other belief sentences. So every belief sentence carries a

covert conditional “if I am consistent”. For example, if I argue for

a theory T and I say “I believe T”, I actually mean “I believe1 that

my reasoning cannot prove false sentences AND I believe2 that T is

a reasonable theory, whereas believe1 is of a higher grade of certainty

than believe2.”

If human reasoning can be captured in a belief system, as Rein-

27Feyerabend, Against Method, 114 and 225.
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hardt and Chalmers argue, the consistency of the belief system is ab-

solutely undecidable. But since every possible belief depends on the

consistency of this system, every such belief is of the same (or lower)

epistemological grade of justification. Therefore the assertion of an

axiomatic belief system leads to an epistemological egalitarianism in

which every belief sentence has an equal grade of justification: abso-

lutely undecidable. This is why Chalmer’s argument concludes to the

unassailable belief of a false sentence; no distinction between more or

less justified can be made any more.

4 Conclusion

Gödels dichotomy cannot be resolved so far. The only tenable way

to resolve it would be giving up the possiblity of any knowledge, as

Nietzsche did by denying the intelligibility of the world. But this

form of nihilism is incoherent to our everyday actions and the basic

process of thinking, which presumes a distinction between more and

less reasonable beliefs in order to work.

A reasonable consequence of the dichotomy is, in my opinion, a

form of mathematical realism (or platonism), as Gödel pleaded for.

The case is similar to Nietzsche’s objection to the possibility of knowl-

edge: Unless mathematics is not completely meaningless, it cannot be

a human invention. If human mathematical reasoning can be captured

by a formal system like Epistemic Arithmetic, the consistency of this

system would be absolutely undecidable.

Maybe the functionalist thesis is right and human reasoning is

equal to some formal epistemic system. Then we have to simply trust
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that our system is consistent and sound. But is trust not usually based

on a belief and again belief a form of knowledge?

I come to the conclusion that if mathematical reasoning has the

power to assert any truths at all, then Gödel is right by saying that the

human mind infinitely surpasses the power of any finite machine. This

does not mean that there are no absolutely indecidable problems. But

it entails that there are some ‘finitely’ indecidable problems that are

considered knowledge by our intellect - like the consistency of thinking.

I would like to conclude this essay with a 750-year-old quotation

by Thomas Aquinas, maybe already anticipating the contemporary

debate:

Our intellect, furthermore, extends to the infinite in un-

derstanding. 28

28Thomas Aquinas, Summa contra Gentiles I, cap. 43, n. 10.
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